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The zero-temperature transverse dynamic susceptibility at frequency @, x.~(2), is calculated diagram-
matically for conduction electrons in a dilute magnetic alloy. The static magnetic field is assumed to be
sufficiently large to quench the Kondo divergence. The exchange interaction is treated to second order in
the coupling constant J. It is found that the conduction-electron magnetic-resonance response is a § func-
tion at the exchange-‘“‘dressed” conduction-electron resonance frequency w’, with a superimposed Lorentzian
envelope centered at w,/, which is finite (“turns on”) at frequencies Q> w;, where w, is the localized spin
resonance frequency. The implications of this result are discussed with reference to the magnetic-resonance
bottleneck, and previous (approximate) calculations of the zero-temperature magnetic-resonance response.

I. INTRODUCTION

Heretofore, attention has been focused primarily on
the magnetic-resonance properties of only the local-
ized spin in dilute magnetic alloys.! It is the purpose of
this paper to exhibit a result for the =0 transverse
dynamic spin susceptibility of the conduction-electron
spins for a dilute (¢<1) alloy, to second order in the
exchange interaction

3r=—(J/N) X e RiS; 0y, (1)
a,i

where J is the exchange coupling constant, S; the spin
of the localized moment at position R;, and a4 the qth
spatial Fourier component of the conduction-electron
spin o (r). This quantity has been computed already,
but with the use of decoupling techniques.?® In these
calculations, not only were the usual decoupling approxi-
mations made, but also a somewhat artificial separation
was made of operators which allowed an exchange
self-energy to be defined at all. By examining the struc-
ture of the imaginary part of the one-electron self-
energy—in particular, the spin-flip part (the only finite
contribution at zero temperature)—we have been able
to compute the effective zero-temperature width of the
conduction-electron magnetic-resonance line. As will be
shown in Sec. II, the result is a resonance response
which is a rapidly varying function of frequency. The
response function consists of a ¢ function at the ex-
change-shifted conduction-electron resonance line posi-
tion, and a superimposed asymmetric ‘“‘Lorentzian’ line
centered at the same position, but of finite amplitude
only when the external frequency Q exceeds the localized
spin Zeeman frequency ws. This surprising result turns
out to be mirrored somewhat in the decoupling result of
Refs. 2 and 3, as exhibited in Sec. ITI.

Such a rapid frequency variation of the conduction-
electron resonance linewidth has implications for the
so-called “magnetic-resonance bottleneck’” problem. In

2

particular, at very low temperatures it would appear
that the bottleneck would essentially be absent for
Q<w, and in full force for 2>w,. This could lead to
sharply asymmetric resonance line shapes for the
localized-spin-dominated bottlenecked resonance, as
well as for conduction-electron spin resonance itself. The
implications are discussed in detail in Sec. III.

Finally, we emphasize that we are ignoring Kondo-
like divergences. That is, we are assuming that the
static magnetic field H, is large compared to the “criti-
cal” Kondo field H,~(D/2u) e /?7, where a rectangular
approximation (magnitude p, centered at Ep, and
width 2D) has been made for the conduction-electron
density of states.

II. T=0 CONDUCTION-ELECTRON TRANSVERSE
DYNAMIC SUSCEPTIBILITY

A number of previous calculations*?® exist for the self-
energy of a conduction electron interacting with a ran-
dom array of localized spins (assumed to be in equilib-
rium with the lattice) via the exchange interaction (1).
Abrikosov’s diagrammatic calculation did not include
the magnetic-resonance response function. Spencer’s
diagrammatic calculation® was carried out for all
temperatures (but explicitly presented only for equal g
factors, i.e., for w,=w,). The work of Orbach and
Spencer? was applicable to all temperatures and dis-
played for arbitrary g factors, but utilized a decoupling
scheme. By virtue of this approximation, they were able
to compute the full dynamic transverse susceptibility
for a coupled localized conduction-electron system
(neglecting vertex corrections for the conduction elec-
trons). We shall compare their results at 7’=0 with
the exact results of this section in Sec. III.

If Spencer’s diagrammatic method is applied to a
dilute alloy for w,>ws, one finds, using (1) at zero
temperature, the following second-order exchange
self-energies for “up” (1) and “down” (] ) spinsin a
4517
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T n | T T | magnetic field:
2y (wkis)
030+ =cpJYIn [(D+ws—w)/(ws—w)| £imO (w—w;) ],
(2a)
025~ 2 (wis)
3 020f =cpJ’[In [(wstw)/(D4witw)| £ird(—w—w,)],
Z‘_:- (2b)
s 0.5 where p is the one-spin conduction-electron density of
states, and where ¢ is the atomic concentration of the
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Fic. 1. Plot of the spectral density, as defined by Eq. (4) in
the text, against frequency. The parameters contained in the
function are w,=0.0001 €V, ¢pJ?2=0.00002 eV, and D=5.0 eV. ~ 04+
The zero-frequency shift & 1 equals 0.000216 eV for these values. 3
This first curve is for kinetic and magnetic energy equal to zero, e
relative to the shifted origin of energy & 4. The location of the § <
function is dictated by the solution of ReGyt(w)~1=0 in the 3 I
regime where w<ws.
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008}- . i
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008~ F16. 3. Plot of the spectral density, as defined by Eq. (4) in
the text, against frequency. The parameters are listed in the
3 | figure caption for Fig. 1, and the energy excitation ex3— & is
= equal to 2ws.
<|[:
3 004f
localized spins. We have used the rectangular-band
- (width 2D centered at the Fermi energy) approxima-
tion for the conduction-electron density of states. The
0k relations (2) are interesting, for they enable us to ex-
amine the spectral density and hence the validity of the
quasiparticle picture.! The propagator for spin-T
[’ electrons is written as
0.000 é ! 'Il L ; Gt (w) = {w—ex 116 sgnow
w/ws

F1c. 2. Plot of the spectral density, as defined by Eq. (4) in
the text, against frequency. The parameters are listed in the
figure caption for Fig. 1, and the energy excitation ey t—é,¢ is
equal to ws.

+op’[In [(D+-wi—w)/(w—w)| +irO(w—w,) sgnw]}~,
(3)

with an obvious form for Gy, (w) using (2). We in-
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defined by (5), using (7), against &
external frequency Q. The parameters ~
are the same as those listed in the
figure caption of Fig. 1. The conduc- & B
tion-electron exchange-shifted res- ‘5
onance energy w. is equal to jw, for _§
this case. S o2k
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corporate in the Zeeman energies the first-order ex-
change (“Day”) shifts produced by (1).

The spectral density appropriate to an electron with
wave vector k and spin T is

A= (1/7) ImGx 1 (o). (4)

The form of this quantity as derived from (3) is a §
function at the zero of the real part of the denominator
of Giit(w) for w<ws;, and a smooth structure rising
rapidly at |w| =w,+8, where § is a positive infini-
tesimal, with a peak (or peaks) which depends (depend)
on the frequency w and the energy ecs. At zero fre-
quency, ReZ) is nonzero and opposite in sign to ReZ,,
implying a finite shift in the conduction-electron g
factor. This shift is just a manifestation of the Kondo

Q/wg

effect in the context of magnetic resonance.” We shall
work at magnetic fields which are appropriate to Zee-
man energies considerably greater than kT, so that the
Kondo divergences are not important in the sense of
destroying the validity of perturbation theory. The
position and area under the & function depend on the
explicit values of e, ¢pJ? w;, and D. Figures 1-3
display (4) for typical values of these parameters.
The question of the validity of the quasiparticle picture
is very similar to that found by Engelsberg and
Schrieffer® for conduction electrons interacting with
phonons in an Einstein model, with the important
difference that the particle-hole symmetry is absent in
the susceptibility problem. The situation appropriate
to Ax,, can be derived by simply reversing the sign of w.

T
10+
F16. 5. Plot of the Imx.(Q)~, as L
defined by (5), using (7), against O
external frequency Q. The parameters (8}
are the same as those listed in the
figure caption of Fig. 1. The con- & |-
duction-electron exchange-shifted res- %o
onance frequency w.' is equal to w; § 06
for this case. R
041
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The extraordinary frequency dependence of the real
and imaginary parts of the self-energies exhibited in (2)
makes the direct computation of the transverse dynamic
susceptibility considerably more awkward than in
previous (high-temperature or decoupling) calculations.?
The absence of a wave-vector dependence of the self-
energy enables the computation to be carried out
analytically, in a manner not unlike that of the genera-
tion of the transport equation for an electron gas inter-
acting with phonons.® Two steps are involved. First,
using the technique of Fulde and Luther,® one can
include vertex corrections which are known to influence
substantially the final analytic form for the suscepti-
bility. For exchange scattering, however, the second-
order vertex correction vanishes at zero temperature
(being proportional to (S,2)— (S,)?, where S, is the z
component of localized spin), and thus no role will be
played by their formal inclusion in our analysis. Second,
using (3), an analogous expression for Gy,,(w), and the
integration methods of Refs. 9 and 10, we can obtain an
expression for the transverse dynamic susceptibility at
external frequency Q. We find

xe (@) =xp[ 1417 (Q) ], (5)

where xp is the static exchange-enhanced Pauli suscepti-
bility, and

0
J(Q)=1 /Q dw (Q—we—l—cpfz

(D+ws—w—Q) (D4ws+w)
(—w—ws) (Q+w—ws)

X In +2i6+1imcp J?

-1

X [O(—w—ws) +@(9+w—ws):|) (6)

This expression is valid to O(Q/Er) and O(w,/Er),
certainly small quantities in our case. The structure of
the integral in (6) is very interesting. Consider the
following situations.

Q< ws. In this case, the arguments of the ® functions
never become positive over the region of integration.
The imaginary part of J(Q) is then a & function cen-
tered at the exchange-shifted value of w,. In general,
for small cpJ? (e.g., in the vicinity of the values used for
Figs. 1-3), the logarithm varies little over the frequency
integration region since the denominators in the
logarithm never become vanishingly small. Comparison
with the spectral-density é-function positions shows
that the resonance is shifted by the difference in the
real parts of the “up” and ‘“down” self-energies. This
difference is manifested as a shift in the g factor. The
slow frequency variation of the logarithm in this fre-
quency regime allows us to simply ‘“‘renormalize” w,,
the “Day”-shifted conduction-electron resonance fre-
quency. We can then regard the shifted resonance
frequency w,” as a constant. Thus, in this frequency
regime, the transverse dynamic susceptibility of the
conduction electrons is centered at the exchange-
“dressed” value of w,,

W, =w,~+cpJ? In | D/ (w+w,) (w—ws+LQ) |.

Q> w;. This regime contains a zero for the argument
of both ® functions, and a concommitant divergence of
the logarithm in (6). The zeros occur when

W= —ws, w=ws—.

The coefficient of the logarithm is small (see the values
used for Figs. 1-3), so that it becomes substantial only
in the immediate vicinity of the zeros. It is at these
values of w that the ® functions “turn on.” The di-
vergence of the real part of the denominator acts only
to quench the initial appearance of the © functions. In
practical terms, this quenching has essentially no effect
on the magnitude of the integral, since the logarithm is
well behaved and small (indeed, essentially constant)
over the remainder of the integration path.

For Q=uw;, the zeros occur only at either end of the
integration path, the argument of both ® functions
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Fic. 7. Plot of the vertex-
modified decoupling result, Eq.
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(11), for the conduction-electron 8 _ -
spin-resonance linewidth 1/74(Q) ;1_ fwg/2k = 0.7575
as a function of temperature for 3 g-—wg/2k =0.825
various values of the Zeeman ’( 10 a
splitting of the localized spin res- <= -
onance (i.e., for various values 08l
of the localized-spin-resonance ¢ g *
factor). The curves are normalized ’: =
to the high-temperature value = gl
(8/3)wcpJ2S(S+1). . e
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remaining negative in the integration region between
these points of measure zero. This means that the
susceptibility function J(®) remains a § function at the
exchange-dressed value w,’. For @> w,, the regions of the
integration path for which the ® functions have positive
argument increase symmetrically toward one another
from either limit. The critical value Q= 2w, results in the
first © function having positive argument for the first
half of the integration region and the second ® function
having positive argument for the second half. The
integration in (6) produces, therefore, for Q@=2w;, a
symmetric Lorentzian form for the ReJ(Q) centered
at w,/, with width mcpJ% As Q continues to increase
beyond 2w,, the integration regions over which the ©®
functions have positive argument increase smoothly
from zero (at @=2w,) to the full value of @ (for large ?).
This results in a sum of two Lorentzians, both centered
at w,/, and with widths wcpJ? and 2wcpJ? The latter
increases in strength (proportional to @—2w,) as
increases in magnitude. The strength of the former
(proportional to 2w,) remains constant.

These statements can be made explicit by carrying
out the integration contained in (6). We absorb the
essentially constant logarithmic term in the resonance
frequency, as discussed before, and find

0<Q<ws:
J(Q) =10/ (Q—w,’+216) ; (7a)
W <D< 2w
. 2(Q—ws) 20,—K )
J(Q)= ; (7b
@) i(ﬂ—we'+i7rcpﬂ Q—w,+218 (7b)
20, <Q:
. 2w Q— 2w, )
J(Q)= (7
@) 1(Q—we'+i7rcpﬁ+Q—we'—l—incpJZ (7c

T (°K)

Some graphical examples of Imy,~(Q), as derived from
(5) with the use of (7), are exhibited in Figs. 4-6 for
various values of 2, w,’, and ws.

III. DISCUSSION

The quantity representing the conduction-electron
second-order exchange linewidth is referred to in the
literature as 1/T. As seen from (6) and the ensuing
discussion, it is very strongly frequency dependent at
zero temperature. In particular, it vanishes for fre-
quencies @ <w;, and its magnitude increases in the range
ws<Q< 2w, saturating at twice its Q= 2w, value when
Q becomes large (but remember that @ is restricted to
be < Er).

It is interesting to compare the 7'=0 results of
Sec. IT with those of Orbach and Spencer. At finite 7,
they find

ImZy (w) =mcp J2{ S(S+1) — (S:*)24 (S:%)

X tanh[ (ws—w)/2kT]}, (8a)
ImZ, (w) =mcpJ2{ S(S+1) — (S )2+ (S:*)
X tanh[ (ws+w)/2RT]}.  (8b)

Here, (S;?)—— S as T—0 because w, has been taken to
be equal to — g.H¢?. These self-energies are composed of
1/T,'-like contributions from frequency-modulation
effects of the localized spin [proportional to {(S:*)2)—
(8:#)?in (8)] and 1/ Ty -like contributions from mutual
spin flips of the localized and conduction electrons
[remainder of terms in (8)7]. As 7—0, the former
vanish and the latter saturate at one of three values,
according as w, is greater than, lesser than, or equal to w.
In the vanishing-T limit, (8) approximates to

Im21 ((.v)) IT smallgz"rcp]2sf-[(w3—w)/k T:l)
Imzl(w) IT smaungcpﬁSf_[(ws-i-w)/kT:l,

(9a)
(9b)
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F1c. 8. Comparison of the diagram-
matic result for the transverse
- dynamic conduction-electron reso-
nance absorption (taken from Fig. 5)
I and that derived using the vertex-
modified decoupling linewidth func-
B tion for S=% plotted in Fig. 7 and
given by Eq. (11). It is seen that the
decoupling result “turns on” sharply
when  increases beyond w;, whereas
the diagrammatic result turns on
smoothly in the same frequency
region. The conduction-electron ex-
change-shifted resonance frequency
w,' is equal to w, for this figure.

where f~(x) = (e?+1)~.. The various limits of (9) are
self-evident. For example, ImZy(w) vanishes at small T
for ws>w, equals mcpJ2S at ws=w, and is equal to twice
that value for ws<w. We may therefore, in the zero-
temperature limit, replace (9) by

(10a)
(10b)

ImZy (w) |7—o=2mcp J2 SO (w—w;),
ImZ; (w) IT=0: 27GC]2S® ( —w—ws) .

For S=%, Eq. (10) agrees exactly with the zero-tem-
perature diagrammatic S=# result (2). As discussed in
Orbach and Spencer,? the decoupling procedure results
in a transverse-dynamic-susceptibility linewidth which
is just the sum of the self-energies (10). When the
vertex contribution is added,® the magnetic-resonance
linewidth becomes, at finite temperatures,

1/ Ta=2mcp J2{2[ {(S:*)2)— (S:#*)*]+ S(S+1)
—((S#)2)+ (S:*) tanh3B(ws—Q) ). (11)

The temperature dependence of (11) is plotted in Fig. 7
for Q in the Q-band regime (Q/2k=0.75°K) for various
magnetic field values. At T=0, it exhibits a ®-function
behavior, being zero for Q<w,, one-half its high-tem-
perature value for @=w,, and equal to its high-tempera-
ture value for Q> w,. The decoupling result is similar to
the exact result (6), but the former ‘“turns on” in an
abrupt manner at Q=w,. The exact result (Figs. 4-6)
exhibits a smooth “turn-on’” of the Lorentzian breadth.
The two results are compared in Fig. 8 for a representa-
tive case. Clearly, the decoupling results are crude at
T=0, but they are all we have at finite temperatures.

The situation concerning an actual magnetic-
resonance situation is interesting. In order to break the

so-called bottleneck condition, it is necessary that
AS>1/T.i(Q), where A, is the conduction-electron
spin-lattice relaxation rate. Failing this, at usual con-
centrations of localized spins, the primary contribution
to the resonance comes from the localized spins with a
linewidth sharply reduced from the predicted second-
order exchange contribution 1/74(Q). This reduction
would not occur if the bottleneck were broken. One can
break the bottleneck either by increasing A, or by de-
creasing 1/74(Q2). The latter can be made to occur
intrinsically by merely lowering the temperature if
ws>w. Then, on the high-field side of the resonance line,
at very low temperatures [see Fig. 7 for an estimate of
the magnitudes of 7T, w,, and 1/7.4(Q2) involved]
1/T5a(2)—0, and the localized spin resonance will be
allowed to take on its full linewidth of 1/74(Q)
[assuming that w, and w, are further apart than 1/74,(%)
at these temperatures]. This implies a sharp asymmetry
in the magnetic-resonance linewidth of dilute transition-
metal alloys at low temperatures: A narrow width on
the low-field (bottlenecked) side of the resonance and a
broad width on the high-field (bottleneck broken) side.
Such an asymmetry would allow a direct observation of
exchange effects in dilute transition-metal alloys
(indeed, even the estimation of J), something which is
not possible at normal helium temperatures and usual
magnetic fields.
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We have used the Faraday effect to measure the magnetization of the insulating ferromagnet CrBr;
as a function of magnetic field (up to 9.5 kG) along 29 isotherms in the temperature range 7.—2.8°K <
T<T.+6.7°K, where T,=32.884°K. The numerical results are presented in tabular form. We have also
analyzed these data and found that the spontaneous magnetization goes to zero as (7.— T')# with g=
0.368+0.005. Along the critical isotherm M~HY? with §=4.284-0.1 and the susceptibility for =0 and
T>T, diverges as (T'—T.)~r with y=1.2154-0.02. All of the data are consistent with the hypothesis
of the static scaling laws. Two simple parametric equations of state were tried, and the better of the two
was found to represent the data quite well and be a useful form for calculations of thermodynamic properties

in the critical region.

I. INTRODUCTION

The striking similarities in the anomalous behavior
of thermodynamic properties near phase transitions
in apparently very different materials has led to intense
experimental and theoretical interest in the study of
magnetic materials, fluids, and other substances in the
region around the critical point.}—3

The first general model of the critical point was
provided by Landau’s theory of second-order phase
transitions,* which is equivalent to the Weiss molecular-
field model for magnetic systems or to the van der
Waals equation for fluids. The Landau model assumes
the free energy to be analytic everywhere in the critical
region, and predicts thermodynamic anomalies at the
critical point which are qualitatively valid but which
have been experimentally shown to be quantitatively
incorrect. The physical reason for this is clear: The
Landau model predicts a diverging susceptibility at the
critical point, but fails to include the diverging fluc-
tuations of the order parameter (magnetization)
which accompany the rise in susceptibility.

A significant unifying advancement was the concept
of static scaling laws*7 based upon the physical idea
that the fluctuations in order parameter could be
treated by means of a spatial correlation function with
the critical behavior expressed as the divergence of a
single correlation length at the critical point. This leads
to the mathematical assumption that the free energy is
everywhere analytic except at the critical point itself
(and possibly along the coexistence curve). Expressed
in magnetic language, the static scaling laws may
be summarized in the statement that the scaled mag-
netic field H | T— T, |7 is a function only of the scaled
magnetization M | T—T, | (where 8, § are the usual
critical exponents along the coexistence curve and
critical isotherm, respectively). That is,

H/|T-T.[#=2M/|T—-T.|?). (1)

These ideas were first experimentally tested and
verified within the accuracy of available data for the
metallic ferromagnets nickel®® and CrO. (only for
T>T,).® The analysis of data collected by Green,



